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Abstract 

Roadway lighting is a conventional roadway infrastructure  to ensure nighttime safety and 

security for multimodal road users (motorists, pedestrians, cyclists, transit passengers). The  

Advanced Lighting Measurement System (ALMS)  developed by CUTR provides a low-cost and 

effective solution for collecting high-resolution lighting data for a big-scale  roadway  network. A 

previous CTEDD-study (Development of Automated Roadway Lighting Diagnosis Tools for 

Nighttime Traffic Safety Improvement, Phase I) developed and improved an analysis tool to 

diagnose  lighting patterns  and estimate  nighttime crash risks based on big lighting data. This  

Phase II project  aimed  to enhance the methods  and tools developed in Phase I  to investigate  the  

impacts of lighting patterns on nighttime pedestrian crashes, address the effectiveness of LED  

technologies, develop  a  sliding window algorithm for uniformity diagnosis, and recode  the  

analysis engine to integrate  more functions and improving processing speed.  

The study adopted the matched case-control method, which can address the critical issue 

in lighting data—the confounding effects between illuminance mean and standard deviation—to 

investigate the impacts of lighting patterns on nighttime pedestrian crashes. Crash Modification 

Factors (CMFs) for the mean of horizontal illuminance (representing average lighting level) and 

the standard deviation of horizontal illuminance (representing uniformity) were developed to 

quantify the impacts. The study also developed a Safety Performance Function (SPF) for LED 

technologies based on Florida Department of Transportation (FDOT) District 7 light pole 

inventory data. The SPF indicates that lighting upgrading projects (HPS to LED) in Florida tend 

to decrease nighttime crash frequency by 17%. In addition, a sliding window algorithm was 

developed to diagnose lighting uniformity by scanning the lighting patterns along a segment and 

calculating the uniformity measures within a limited area covering driver vision field. Compared 

to uniformity for the whole segment, the algorithm can provide more reasonable and detailed 

diagnosis of lighting uniformity. In addition to developing new models, the analysis engine was 

recoded to include more functions and improve processing speed. The new analysis engine 

realizes the functions of connecting different data sources, lighting diagnosis, nighttime crash 

prediction, and geometric and traffic data processing; with the optimized codes, its process time 

is reduced by 90%. 

The developed methods and tools are being applied in FDOT District 7’s district-wide 

lighting collection and analysis task. The analysis results will provide decision-making support 

for FDOT District 7 roadway lighting maintenance and nighttime safety management. 
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Chapter 1:  Introduction  

1.1  Background  

Nighttime crashes, particularly those  that result in fatalities and injuries, are over-

represented on the U.S.  highway system. Roadway lighting  is a vital  countermeasure to increase  

visibility at night and provides clear safety benefits  for multimodal users such as drivers, 

motorcyclists, pedestrians, bicyclists, and transit-dependents. In 2019–2020, the  research team  

developed a prototype of computer tools in a CTEDD-funded research project titled 

“Development of Automated Roadway Lighting Diagnosis Tools  for Nighttime Traffic Safety 

Improvement.” The computer tools (http://its.cutr.usf.edu/lita), built on the Esri ArcGIS web-

GIS platform, provide  core functions of data  management, data analysis, and data visualization 

for lighting analysis and safety management, as shown in Figure  1-1.  

Conduct Identify 
economic corridors 

appraisal for with 
project nighttime 

selections safety issues 

Estimate Diagnose 
crash lighting 

reduction patterns 

Propose 
lighting 

maintenance 
or upgrade 

projects 

Figure  1-1. Lighting analysis and nighttime safety management  

However, the prototype of the computer tools still has some limitations:  

•  Safety analysis for vulnerable users  –  The prototype  is used primarily for vehicular 

nighttime crash analysis rather than vulnerable users.  As  nighttime  crashes account for 

almost 70%  of pedestrian fatalities  (2),  vulnerable users (pedestrians  and bicyclists) are a  

major concern in nighttime safety management. Limited previous studies  (3, 4)  

investigated the impacts of street lighting patterns on nighttime pedestrian/bicyclist  crash 

risk; no implementable Crash Modification Factors (CMFs) of lighting patterns for 

vulnerable users were identified from these previous  studies. It is necessary to develop  

CMFs for lighting patterns for vulnerable users based on ALMS data and integrate them  

into the  computer tools.  

http://its.cutr.usf.edu/lita
http://its.cutr.usf.edu/lita
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•  Safety analysis for LED lighting  –  The prototype does not distinguish LED technology 

and traditional technologies such as High-Pressure Sodium (HPS) in safety analyses. As 

more and more road corridors have been upgraded to LED systems in Florida  and 

nationwide recently, engineers and managers need to assess the safety performance of 

LED technology, which has different vision characteristics from HPS. The SPFs and 

CMFs developed in the prototype were based primarily on HPS lighting data and cannot  

capture  the safety characteristics of LED lighting. Only one previous study  (5)  explored 

the impacts of LED upgrade on nighttime crashes. The proposed study needs to develop 

or calibrate CMFs for LED lighting based on FDOT  District LED upgrade projects  

conducted in the past decade. The  enhanced computer tools in Phase II will  integrate  the  

CMFs for LED lighting and provide a function to stratify stakeholder needs in assessing 

the safety performance/benefits of LED lighting projects.  

•  Functionality  –  The prototype provides an initial function of lighting pattern diagnosis, a  

simple user interface, and non-optimized geoprocessing codes. It is necessary to enhance  

these functions to provide  an implementable product  with full functionality.   

1.2  Research Objectives  

This  project  aimed to enhance  the prototype of the  Automated Roadway Lighting 

Diagnosis Tools  developed  in Phase I and produce an implementable system at  Technology 

Readiness  Level (TRL) Level  8: Technology Proven in Operational Environment. More  

specifically,  the research objectives are as follows:  

•  Develop roadway lighting safety analysis methods for pedestrians, who  are  major 

concerns  in nighttime safety.   

•  Develop safety analysis methods for LED bulbs that  have different photometric  

performance from traditional lighting technologies.  

•  Improve the roadway lighting diagnosis algorithms to recognize “unsafe” uniformity 

patterns more effectively.  

•  Enhance  the functionality of the  lighting analysis  platform developed in Phase I, 

including optimal processing speed and  include more functions.  

•  Implement the  developed methods and tools  for the  FDOT District 7 district-wide  

lighting measurement  project.  
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Chapter 2: Impacts of Lighting Patterns on 

Nighttime Pedestrian Crashes 

2.1  Introduction  

Nighttime pedestrian crashes are a major concern in transportation safety management. 

Fatality Analysis Reporting System (FARS) data indicate that 4,580 pedestrians were killed in 

dark environments in the U.S. in 2019, accounting for 74% of pedestrian fatalities that year (2). 

Among these, 72% occurred at midblock and 23% were intersection-related. Reduced visibility 

at night is an inherent factor that increases the risk of vehicle-pedestrian collisions. 

Driving is a visual effort, in that drivers continuously scan the surrounding environment 

to identify potential risks. If an object (e.g., a pedestrian) presents on a route, the driver needs 

sufficient time to detect the object and take action (e.g., braking and avoidance maneuvers) to 

avoid a potential collision. Drivers detect pedestrians at night primarily as a result of luminance 

contrast—the visual (luminance) difference between the pedestrian and the background (6). 

Street lighting is an effective way to increase luminance contrast (visibility) of pedestrians at 

night and to improve driver detection ability (7, 8). Existing studies have addressed the safety 

effects of installing street lighting on pedestrian safety. Jensen (9) suggested that installing 

roadway lighting can reduce pedestrian injuries by about 45% when the speed limit exceeds 50 

km/h and 12% when the speed limit is less than 50 km/h. Siddiqui et al. (10) found that roadway 

lighting reduced pedestrian crash odds by 42% at midblock locations and 54% at intersections 

compared to dark conditions with no lighting. Sullivan and Flannagan (11) showed that lighting 

improved pedestrian safety in three crash scenarios—curve, motorway, and corner. Nambisan et 

al. (12) studied the impacts of lighting crosswalks and concluded that lighting enhances 

pedestrian safety. Mohamed et al. (13) found that the probability of fatal pedestrian crashes 

increased when the roadway was not lighted rather than lighted. Olszewski et al. (14) concluded 

that, compared to daytime, nighttime pedestrian crashes increased 1.95 times with roadway 

lighting and 4.08 times without roadway lighting at unsignalized crosswalks. Patella et al. (15) 

found that vehicle average speed decreased by 19.3% at crosswalks in illuminated conditions and 

confirmed the positive effects of roadway lighting on nighttime pedestrian safety. 

Despite these insightful developments, the effects of lighting photometric patterns (i.e., 

average lighting and lighting uniformity) on nighttime pedestrian crashes remain unclear. 

Intuitively, drivers can easily detect pedestrians in a bright environment and have more 

opportunities to avoid collisions. When driving in uneven lighting conditions (i.e., from a dark 

environment to a bright visual field or vice versa), drivers need additional time to adapt to the 

new lighting conditions, and their visual functions may be degraded during the adaption, which 

increases crash risks. A well-designed street lighting pattern (bright and uniform) can increase 

pedestrian luminance contrast against the roadway surface and aid human eyes in adapting to a 

changing lighting environment better than headlights alone. Several previous studies have 

addressed the safety effects of street lighting patterns on vehicle crashes and developed crash 

modification factors (CMFs) (16–21). However, little effort has been made to explore the impact 

of lighting patterns on nighttime pedestrian crashes. Zhou and Hsu (22) reported that nighttime 
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pedestrian crash frequency at low lighting level segments was much higher than at high lighting 

level segments. Wei et al. (18) found that horizontal illuminance of 0.9 foot-candle (fc) or higher 

can reduce the likelihood of fatal and serious pedestrian injury by 10.7% at signalized 

intersections. Nabavi Niaki et al. (3) concluded that nighttime pedestrian crash frequency 

increased with average lighting conditions and attributed this counterintuitive finding to driver 

safety compensation in the dark environment and selection bias (traffic agencies tend to improve 

roadway lighting at sites that experience more crashes). 

Two photometric parameters are widely used in the roadway lighting design (6). Average  

horizontal illuminance—the average number of lumens that fall onto a unit  of pavement surface  

either in foot-candle (fc, lumens per ft2) or lux (lx, lumens per m2)—measures the average  

lighting level on a roadway segment. Illuminance ratio—the maximum illuminance divided by 

the minimum  illuminance (max-to-min ratio) or the average illuminance divided by the  

minimum illuminance (mean-to-min ratio)—represents the uniformity of street lighting patterns  

along a segment. It  has been argued that  the ratio-based uniformity measures may not accurately 

capture  the “true” lighting patterns that  influence  driver vision in large-scale lighting analysis  

(i.e., roadway corridor) because of the potential issue of spatially-unrelated extreme lighting 

points  (21, 23, 24). To overcome this  disadvantage of ratio-based uniformity criteria, two 

previous studies  (23, 24)  adopted the standard deviation of horizontal illuminance as  the  

uniformity measure, arguing that  it  uses the information of all  lighting points and thus  prevents  

the issue of spatially-unrelated extreme  lighting points. However, as  Yang et al.  (23)  indicated, 

the standard deviation of illuminance  is strongly and positively correlated to the  illuminance  

mean, especially in a  low mean range, which may cause a collinearity issue  such that  the  model  

cannot distinguish the safety effects  of  the  mean and the standard deviation (25). This correlation 

issue is a significant limitation in a  previous study conducted by Nabavi Niaki  et al. (3)  that  

ignored the  counteracting effects of the standard deviation of illuminance on the  illuminance  

mean and might  lead to the  counterintuitive conclusion—a  high illuminance  mean 

(accompanying a high standard deviation) is associated with a high pedestrian crash frequency 

(probably caused by the high standard deviation [poor uniformity]) at intersections.  

2.2  Research Objectives  

The literature review indicated several research gaps that exist in nighttime pedestrian 

safety studies—1) due to lack of lighting data, few studies explored the effects of street lighting 

patterns (brightness and uniformity) on nighttime pedestrian crashes, and no CMFs were 

developed; 2) counterintuitive findings of the illuminance mean were observed, probably due to 

ignoring the counteracting effects of the standard deviation of illuminance (3); and 3) the safety 

effects of illuminance patterns for pedestrians on midblock segments that experience a sizable 

portion of nighttime pedestrian crashes were not well-addressed. 

Motivated by these research gaps, this study quantified the safety effects of illuminance 

photometry on nighttime pedestrian crash frequency at midblock. Matched case-control studies 

were applied to address the critical issues in previous studies—the confounding effects of the 

standard deviation of illuminance on illuminance mean and spatially-unrelated extreme values 

for ratio-based uniformity measures. Based on the modeling results, reliable and implementable 
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CMFs  of lighting photometric  criteria (average  lighting and lighting uniformity) were developed 

for nighttime pedestrian crash study and management.  

2.3  Methodology  

2.3.1  Matched Case-Control Study  

The matched case-control method has been used in highway safety to relate risk factors to 

a specific outcome (i.e., crash occurrence) with confounding effects  (26–29). Li et al. (21)  

recently adopted the matched case-control  method to develop CMFs of lighting photometric  

criteria for nighttime vehicle  crashes. Compared to cross-sectional studies, the matched case-

control method is more  pertinent for  lighting-related crash modeling. First, it  is suitable for rare-

events modeling (e.g., nighttime pedestrian crashes) and addresses the low mean and aggregation 

bias  issues in the cross-sectional studies  (30). Second, it effectively eliminates the impacts of 

confounding variables  (i.e., counteracting effects of the standard deviation of illuminance on the  

mean, and vice versa) because  each matched case-control stratum shares the same or similar 

values of the  confounding variables  (31). Finally, it  guarantees a balanced number of cases and 

controls so the variance in the parameters of interest  is reduced and the statistical efficiency of 

the model estimation is improved (32).  Motivated by these  merits, this study adopted  the  

matched case-control method  to fit nighttime pedestrian crashes and lighting data.  

Steps  for  conducting a matched case-control study are as follows:  

1.  Define  –  Roadway segments  with a uniform length  are categorized into two groups—1) 

case, for a roadway segment that experienced at least one nighttime pedestrian crash in 

the study period, and 2) control, for a roadway segment that did not  experience any 

nighttime pedestrian crashes in the study period.  

2.  Match  –  A certain number of controls are randomly matched to each case based on the  

similarity of confounding variables  related to both the risk factor of interest (e.g., 

photometric patterns) and the outcome (i.e., nighttime pedestrian crash). With this  

matching technique, the biased estimations on the association between the risk factor of 

interest  and the outcome can be  avoided by mitigating the disturbance from  confounders  

(31). The case-control ratio is determined by the minimum ratio of controls to cases  

among all cross-classification categories.  

3.  Model  –  A  conditional  logistic regression model is developed based on the  matched case-

control strata. The odds ratio, which represents the change of relative nighttime  crash 

risks due to an alternation of unmatched risk factors  (e.g., street  lighting photometry), is  

derived from  the fitted model and could be used as the equivalent of a CMF  (27, 33).  

2.3.2  Conditional  Logistic Regression  

Conditional logistic regression extends logistic regression by accounting for stratification 

in matched case-control studies  (34). Let  𝑦  denote the  𝑗th 
𝑖𝑗  observation (𝑖  = 1, 2, ⋯, 𝐼) of the  𝑖th  

stratum  𝑗  (𝑗  = 1, 2, ⋯, 𝐽). The unconditional likelihood of  one observation is   
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exp (𝛼𝑖 + 𝜷𝑿𝒊𝒋) 
= 1) = (1)Pr(𝑦𝑖𝑗 

1 + exp (𝛼𝑖 + 𝜷𝑿𝒊𝒋) 

where  𝑿𝒊𝒋  is a vector of 𝑘  explanatory variables associating with 𝑦𝑖𝑗; 𝜷  is the coefficients  

corresponding to 𝑿𝒊𝒋; 𝛼𝑖  is the stratum-specific interpretation term reflecting the different  

combination effects of confounding variables for different strata. Maximum Likelihood 

Estimation (MLE) based on the unconditional likelihood is invalid and biased, as the number of 

parameters (𝐼 + 𝑘) grows with the number of observations (assuming the case-control ratio is  

fixed).  

To eliminate unnecessary parameters (𝛼𝑖), the conditional likelihood of each stratum  𝑖  is  

calculated as:  

𝐽 
exp (𝜷𝑿𝒊𝟏)

𝐿(𝑌𝑖|𝜷) = 𝑃 (𝑦𝑖1 = 1, 𝑦𝑖𝑗 = 0 for 𝑗 > 1 | 𝑿𝒊𝒋, ∑ 𝑦𝑖𝑗 = 1, 𝜷) = (2)
∑ 

𝑗=1 
𝑗∈𝐽 exp (𝜷𝑿𝒊𝒋) 

where  𝑦𝑖1  is the case observation of the  𝑖th  stratum;  𝑦𝑖𝑗  for  𝑗 > 1  are  the matched controls  

of the  𝑖th  stratum;  𝑿𝒊𝟏  is the vector of explanatory variables associating with 𝑦𝑖1. As the strata are  

assumed to be independent of each other, the conditional log-likelihood function 𝐿𝐿(𝑌|𝛽) over 

the population of I  strata can be written as  (31):  

𝐼 

𝐿𝐿(𝑌|𝜷) = − ∑ ln {1 + ∑ exp[𝜷(𝑿𝒊𝒋 − 𝑿𝒊𝟏)]} (3) 
𝑖=1 𝑗𝜖𝐽 

The MLE is used to maximize  𝐿𝐿(𝑌|𝜷) with respect to 𝜷.  

2.3.3  Odds  Ratio  

The odds ratio indicates the change of relevant risk due to the  alternation of an 

explanatory variable. Based on the definition, the odds ratio is equivalent to the CMF. For a  

dummy variable, the odds ratio is defined as the ratio of the odds that nighttime  crashes occur in 

the presence of a roadway characteristic  k (𝑥𝑘  = 1) to the odds that nighttime  crashes occur in the  

absence of that roadway characteristic  k  (𝑥𝑘  = 0), holding other variables constant. The odds ratio 

for a dummy variable can be written as  follows.  

 

𝑃(𝑦𝑖0 = 1|𝑥𝑘 = 1, 𝒁) 
[𝑃(𝑦𝑖0 = 0|𝑥𝑘 = 1, 𝒁)]

𝑂𝑅(𝑥𝑘) = = exp(𝛽𝑘) (4)
𝑃(𝑦𝑖0 = 1|𝑥𝑘 = 0, 𝒁) 

[𝑃(𝑦𝑖0 = 0|𝑥𝑘 = 0, 𝒁)] 

where  Z  is the vector of explanatory variables other than 𝑥𝑘; 𝛽𝑘  is the estimated parameter for 𝑥𝑘.  



 

 

 

 

 

7 

2.4  Model  Development  

2.4.1  Data Collection  

Researchers at the Center for Urban Transportation Research (CUTR) at the University of 

South Florida used the Advanced Lighting Measurement System (ALMS) (35)  to collect the  

horizontal illuminance data. This system precisely measures  horizontal illuminance  and 

generates two measurement  points every 10 ft for each lane. With  this system, the CUTR team  
completed illuminance measurements for more than 300 center  miles in Tampa from 2011 to 

2014. The data were collected in an entirely dark environment (9:30–11:59 PM) to ensure that no 

natural  light was present. In this study, 440 roadway corridors in urban and/or suburban areas  
with street  lighting data  were identified based on the  following criteria—1) roadway sections  
between two successive signalized intersections, 2) equipped with High-Pressure Sodium (HPS) 

light bulbs,  and 3) no upgrades on street lighting in the  past several years. A 250-ft buffer was  
subtracted  from the  two ends of the roadway corridor to exclude influence from  adjacent  
signalized intersections.  

2.4.2  Case and Control  Definition  

The 440 roadway corridors were  separated  into small segments with a uniform length. 

Different segment lengths (600  ft, 800  ft, 1000  ft, 1200  ft, 1400  ft) were tested, and the length of 

600 ft was selected,  given that it produced the best  model results in terms of the variable  

significance. In total, 1,638 segments were produced.  

Nighttime crash data from 2011 to 2014 were  matched to roadway segments. A case was  

defined as a segment  that experienced at least one nighttime pedestrian crash, and a  control was  

defined as a segment  that did not experience any nighttime pedestrian crashes. The measured 

lighting data points (horizontal  illuminance at foot-candle, HFC) that fall  into the same roadway 

segment were used to calculate the mean and standard deviation. Segments with missing 

information were screened out, which left 1,234 segments for matching.  

2.4.3  Matching  

The HFC mean and standard deviation, representing average brightness and uniformity, 

respectively,  are  confounders of each other because  they are  correlated and both related to the  

outcome (i.e., nighttime crashes) (21). As plotted in  Figure  2-1,  it is clearly observed that the  

mean and standard deviation of HFC are  positively correlated; the correlation becomes more  

significant as the  mean decreases. When the  mean is less than 0.7 fc, Pearson’s correlation 

coefficient  is as great as 0.86, indicating a strong correlation. This correlation may prevent  

models to correctly distinguish the safety effects of one  criterion from  another. Because the  

impacts of the two photometric measures  on  crashes  are theoretically converse, the positive  

correlation  between them  may result in counterintuitive estimations. Therefore, when quantifying 

the safety effects of one  photometric  measure, it is necessary to control the impacts of another to 

develop reliable CMFs. In this study, two models were developed—1) matching the standard 

deviation to address the impact of the mean on nighttime pedestrian crash occurrence,  and 2) 
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matching the mean to address the impact of the standard deviation on nighttime pedestrian crash 

occurrence. 

Figure 2-1. Illuminance standard deviation vs. illuminance mean 

Annual Average Daily Traffic (AADT), representing traffic exposures, is another 

confounder commonly matched in case-control studies for vehicle crashes (21, 26, 28, 29, 36, 

37). However, AADT does not present a strong correlation with either the mean (r = 0.29) or 

standard deviation (r = -0.03). To avoid overmatching, this study treated AADT as an 

explanatory variable rather than a matching variable. 

As both the mean and standard deviation are continuous, it is impossible to match them 

by the exact values. The following procedures were carried out to categorize them into different 

levels—1) calculate the mean 𝜇 and standard deviation 𝜎 of the two photometric measures, 

respectively, and 2) categorize the two photometric measures based on 𝜇 and 𝜎. The cutoff 

values are −∞, μ − 1.5σ, μ − 0.5σ, μ + 0.5σ, μ + 1.5σ and + ∞. 

Sample sizes by matched categories are presented in  Table  2-1. To keep the number of 

samples of different categories as  high  as possible, a  case-control matching ratio of 1:6 was used,  

as  it is the  minimum in  Table  2-1. This makes the analysis power of the case-control  study 

approximately 98% (30).  

Table 2-1. Matched Categories and Sample Sizes 

HFC Mean (fc) 

<0.045 0.045-0.421 0.421-0.797 0.797-1.172 >1.172 Total 

Case Control Case Control Case Control Case Control Case Control 

6 131 21 237 36 350 36 369 6 42 1234 

HFC Standard Deviation (fc) 

<0.069 0.069-0.299 0.299-0.529 0.529-0.760 >0.760 Total 

Case Control Case Control Case Control Case Control Case Control 

7 162 12 131 37 494 42 298 7 44 1234 
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2.4.4 Descriptive Statistics 

A stratum consists of one case and six randomly-matched controls. A total of 105 strata 

(105 cases and 630 controls) were identified. Explanatory factors for each segment were 

converted into dummy variables. Descriptive statistics of explanatory variables are provided in 

Table 2-2. 

Table 2-2. Descriptive Statistics of Explanatory Variables 

Mean Model Standard Deviation Model 
Case Control Case Control 

Variable Description (n = 105) (n = 630) (n = 105) (n = 630) 
Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

HFC mean < 0.2 fc 0.171 0.379 0.133 0.340 \ \ \ \ 
0.2 fc ≤ HFC mean ≤ 0.5 fc 0.133 0.342 0.152 0.360 \ \ \ \ 
0.5 fc < HFC mean ≤ 1.0 fc 0.505 0.502 0.537 0.499 
HFC mean > 1.0 fc 0.192 0.396 0.178 0.383 \ \ \ \ 
HFC std dev < 0.52 fc \ \ \ \ 0.514 0.502 0.671 0.470 
HFC std dev ≥ 0.52 fc \ \ \ \ 0.486 0.502 0.329 0.470 
Daytime pedestrian crash 0.191 0.395 0.044 0.206 0.191 0.395 0.037 0.188 

occurred 
Shoulder width < 9 ft 0.581 0.496 0.371 0.484 0.581 0.496 0.346 0.476 
Curve presence 0.171 0.379 0.344 0.476 0.171 0.379 0.340 0.474 
Access points > 12 0.286 0.454 0.220 0.415 0.286 0.454 0.173 0.379 
AADT per lane > 6200 0.600 0.492 0.573 0.495 0.600 0.492 0.613 0.488 

2.5 Model Estimation 

The software package STATA 16 (38) was used to fit the two conditional logistic 

regression models—mean and standard deviation. The fitted models are presented in Table 

2-3 and 

Table 2-4, respectively. The coefficients, odds ratio (or equivalent to CMF), confidence 

interval (CI) of OR, and standard error (SE) of OR were reported. All ORs were significant at a 

confidence level of 95% or higher in the two models. 

Table 2-3. Fitted Conditional Logistic Model for HFC Mean 

Variable Coef. z p-value OR (CMF) 95% CI of OR 
SE of 
OR 

HFC mean 
< 0.2 fc Baseline 
[0.2 fc, 0.5 fc] -1.49 -2.16 0.031 0.225 [0.058, 0.870] 0.155 
(0.5 fc, 1.0 fc] -1.67 -2.34 0.020 0.188 [0.046, 0.764] 0.134 
> 1.0 fc -1.93 -2.55 0.011 0.145 [0.032, 0.640] 0.110 

Daytime pedestrian crash 
occurred 

1.31 4.46 0.000 3.719 [2.088, 6.623] 1.095 

Shoulder width < 9 ft 0.93 3.58 0.000 2.537 [1.523, 4.225] 0.660 
Curve presence -0.97 -3.10 0.002 0.378 [0.204, 0.699] 0.118 
Access points > 12 0.70 2.41 0.016 2.017 [1.141, 3.565] 0.586 
AADT per lane > 6,200 0.76 2.80 0.005 2.142 [1.256, 3.652] 0.583 

Model Statistics 
Number of observations 735 
Log-likelihood -172.671 
Pseudo R2 0.155 
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Table 2-4. Fitted Conditional Logistic Model for HFC Standard Deviation 

OR SE of 
Variable Coef. z p-value 

(CMF) 
95% CI of OR 

OR 

HFC standard deviation 

< 0.52 fc Baseline 

≥ 0.52 fc 0.59 2.16 0.031 1.803 [1.056, 3.077] 0.492 

Daytime pedestrian crash 

occurred 
1.68 4.52 0.000 5.373 [2.591, 11.139] 1.999 

Shoulder width < 9 ft 0.84 3.48 0.000 2.320 [1.444, 3.724] 0.560 

Curve presence -0.97 -3.13 0.002 0.378 [0.206, 0.695] 0.117 

Access points > 12 0.79 2.74 0.006 2.205 [1.253, 3.878] 0.635 

AADT per lane > 6,200 0.59 2.22 0.027 1.795 [1.070, 3.010] 0.474 

Model Statistics 

Number of observations 735 

Log-likelihood -167.414 

Pseudo R2 0.181 

2.6 Discussion 

2.6.1 HFC Mean 

The mean of horizontal illuminance represents the average brightness of a roadway 

segment—the higher the HFC mean, the more visible the pedestrian. Theoretically, an increase 

in HFC mean should decrease nighttime pedestrian crash risks. The negative coefficients for 

HFC mean variables in Table 3 support this speculation. To be specific, if the HFC mean of a 

roadway segment increases from < 0.2 fc to [0.2 fc, 0.5 fc], the relatively nighttime pedestrian 

crash risk decreases to 0.255 times; if the HFC mean increases from < 0.2 fc to (0.5 fc - 0.1 fc], 

the relatively nighttime pedestrian crash risk decreases to 0.188 times. Further, if the HFC mean 

increases from < 0.2 fc to > 1.0 fc, the relatively nighttime pedestrian crash risk decreases to 

only 0.145 times. By controlling the HFC standard deviation, reductions of nighttime pedestrian 

crash risks when increasing the HFC mean are significant at a confidence level of 95%. 

Results  also indicate a non-linear relationship between average lighting level and 

nighttime pedestrian crash risks. As shown in  Figure  2-2, nighttime pedestrian crash risk declines  

very quickly  in a low mean range (crash reduction factor of 0.775 [= 1 –  0.225] for <  0.2 fc  →  
[0.2 fc, 0.5 fc]). With a  continuous increase in average lighting level, nighttime pedestrian crash 

risk gradually decreases,  but  the reduction amplitude becomes smaller; the crash reduction 

factors for [0.2 fc, 0.5 fc] →  [0.5 fc, 1.0 fc)  is  0.164 (= 1 - 0.188/0.225) and for [0.5 fc, 1.0 fc) →  
> 1.0 fc  is  0.229 (=1- 0.145/0.188). This trend also exists in nighttime vehicle crashes  (19, 21, 

23).  



 

 

 

 

 

 

  

  

11 

1 

0.225 

0.188 
0.145 

y = 0.8399x-1.383 

R² = 0.9673 

C
M

F
 

< 0.2 fc [0.2 fc, 0.5 fc] (0.5 fc, 1.0 fc] > 1.0 fc 

HFC Mean 

Figure  2-2.  Trendline of CMFs of nighttime pedestrian crashes for HFC mean  

Visual  figures of pedestrians  may provide an intuitive understanding of the safety effects  

of horizontal illuminance on pedestrian visibility. Figure  2-3  represents a series of scenarios  in 

which  a pedestrian presents on the roadside with various horizontal  illuminance levels. Figure  

2-3A  represents a fully dark environment (HFC = 0.1 fc); although the pedestrian wears a  safety  

jacket with retroreflective materials, it  is  still  very difficult  for a motorist  to recognize  him  from  

the background, which implies  that an extremely dark environment (< 0.2 fc) is very dangerous  

for  pedestrians. Figure  2-3B  represents a  medium bright environment (HFC = 0.5 fc); human 

eyes can detect  the pedestrian contour in  this lighting condition  and,  compared to the extremely 

dark environment (Figure  2-3A), motorists  have a  much longer detection distance so the risk of 

pedestrian collisions  may be  greatly reduced. With an increase  in lighting conditions to medium-

high (HFC = 1.0 fc, Figure  2-3C) and high (HFC = 1.5 fc, Figure  2-3D), pedestrian visibility is  

better, but the  crash risk reduction effects of increasing the HFC from  medium to medium-high 

and from  medium-high to high are lower than increasing from fully dark (pedestrian is unseen to 

motorists) to medium bright  (motorist can detect pedestrian contour).  
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A. HFC = 0.1 fc B. HFC = 0.5 fc 

C. HFC = 1.0 fc D. HFC = 1.5 fc 

Figure 2-3. Visual figures of pedestrians in various lighting conditions 

2.6.2 HFC Standard Deviation 

The HFC standard deviation is a uniformity measure; compared to ratio-based measures 

(max-min ratio or mean-min ratio), it can avoid the amplified impacts of extreme lighting points 

and use the full lighting data information such that it is suitable for describing lighting patterns 

for a large space (i.e., roadway segments). A high HFC standard deviation, representing a more 

diverse distribution of lighting level along a roadway segment, theoretically should decrease 

pedestrian visibility and cause higher crash risks because of the driver’s impaired vision and 

extended reaction time. The association between the HFC standard deviation and nighttime 

vehicle crashes has been proven in two previous studies (23, 24). By controlling the confounding 

effects of the HFC mean, this study (Table 2-4) quantified the impact of the HFC standard 

deviation on nighttime pedestrian crash risks. Given constant other factors (i.e., average lighting 

level), segments with a diverse lighting pattern (HFC standard deviation ≥ 0.52 fc) experience a 
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nighttime pedestrian crash risk that is 1.802 times as many as those with a uniform lighting 

pattern (HFC standard deviation < 0.52 fc). 

2.6.3 Other Factors 

The daytime pedestrian crash indicator (one or more daylight pedestrian crashes occurred 

at a given segment) was included in both models as an explanatory variable to capture the 

impacts of risk factors that contributed to both daytime and nighttime pedestrian crashes but not 

related to street lighting patterns. These factors are usually not included in the crash database, 

e.g., pedestrian exposure levels. The function of the daytime pedestrian crash indicator is similar 

to the night-to-day ratio widely used in lighting-safety studies (17, 19, 23, 24, 39, 40). The 

coefficients of the daytime pedestrian crash indicator in the models suggest a significantly 

positive relationship between nighttime pedestrian crash occurrence and daytime crash 

occurrence. 

A narrower shoulder width (< 9 ft) was positively related to nighttime pedestrian crash 

risk in the two models. This finding is consistent with the existing literature (41, 42). Wider 

shoulders provide more refuge space for pedestrians when they are facing collision risks; 

meanwhile, wider shoulders usually associate with high-level roadway classification with better 

safety design standards, such as better sight distance, traffic controls, and geometric features. 

Curve presence was significantly and negatively associated with nighttime pedestrian 

crash risk. Fewer pedestrians cross the road at curves than at straight segments, given that driver 

sight distance is much shorter at curves. Meanwhile, motorists tend to decrease their speed when 

operating through curves. Less exposure together with slower vehicle speed contributes to lower 

nighttime pedestrian crash risk. This finding aligns with existing studies that fewer nighttime 

pedestrian crashes occur at curves (11, 43). 

Access points introduce conflicts between turning vehicles and pedestrians crossing 

driveways or side streets along a roadway segment. More access points imply higher crash risks 

for pedestrians. The two models indicate that if a segment has more than 12 access points, the 

relative risk of nighttime pedestrian crashes increases significantly. With AADT as the measure 

of vehicle traffic exposure, the two models indicate that if AADT is higher than 6,200 per lane, 

the relative risk of nighttime pedestrian crashes tends to significantly increase. 

2.7 Conclusions 

This study investigated the safety effects of illuminance photometric criteria (HFC mean 

as an indicator of average lighting level and HFC standard deviation as an indicator of lighting 

uniformity) on nighttime pedestrian crash occurrence on roadway segments that were overlooked 

in previous studies. The matched case-control method successfully decoupled the correlation 

between the HFC mean and standard deviation, which resulted in counterintuitive findings in 

previous studies. Significant CMFs were developed to quantify the safety effects of the two 

photometric criteria. For average lighting level, taking the low HFC mean (<0.2 fc) as the 

baseline, the CMFs for medium [0.2 fc, 0.5 fc], medium-high (0.5 fc, 1.0 fc], and high (>1.0 fc) 

illuminance means are 0.225, 0.188, and 0.145, respectively. For lighting uniformity, compared 
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to low HFC standard deviation (<0.52 fc), the CMF for high illuminance standard deviation (≥ 
0.52 fc) is 1.803. The CMFs can be used in nighttime pedestrian safety management and street 

lighting assessment. 

Some limitations exist in this study and should be addressed in further studies. First, this 

study considered horizontal illuminance only. Due to lack of data, vertical illuminance, an 

important photometric measure related to pedestrian safety (44), was not included in the models. 

The CUTR team is expanding its lighting data collection efforts in Florida. Vertical illuminance 

data collection will be included in follow-up tasks, and the data will be used to address the safety 

effects of vertical illuminance for pedestrians in future studies. Second, existing photometric 

criteria (mean and standard deviation) are not ideal photometric measures and may not perfectly 

capture the “true” spatial relationship of lighting patterns that influence driver vision (21). New 

photometric measures are needed to encapsulate and fully account for the spatial relationship 

among lighting data points. 
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Chapter 3:  Safety Effectiveness of  

LED Lighting Technology  

3.1  Introduction  

As oil and gas reserves decrease and the demand for energy increases, energy conservation 

is an urgent priority. The use of energy-efficient technology is  necessary  in roadway lighting to 

mitigate  the effects of the  energy crisis. Light-emitting diodes (LEDs) are fourth-generation light  

sources developed as an energy-efficient alternative to traditional street  lighting, such as  high-

pressure  sodium (HPS). As  shown in  Figure  3-1, LED street lights are designed to keep streets  

and roads well-illuminated by directing the output  light towards specific locations. By switching 

to LED streetlights, cities are able to reduce  maintenance, energy cost, glare, and loss of light. 

Although LEDs have a higher installation cost  than HPS light sources and generally provide  

inferior luminous efficacy, continuous development in the capacity of LEDs is anticipated in the  

near future. Assuming an annual usage of 4,000 hours, the estimated average  lifetime of LEDs is  

10+ years; metal halide lamps have a shelf life of approximately 5.5 years. LED light sources can 

be switched on/off immediately, but it  takes a long time for metal halide lamps  to reach an ideal  

functioning temperature. Moreover, LEDs will  eliminate the problem of hot spots on pavement, 

as observed with the use of metal halide street lights, because LEDS provide a uniform  

distribution of light.  Table  3-1  summarizes the  advantages of LED technologies for roadway 

illumination.  

Figure  3-1. Comparison of HPS  (left) and LED  (right) lighting technologies   

(Source: ADOT LED Lighting Pilot Study)  



 

 

 

 

 

   

 

 

  

   

 
 

   

 

  

 

    

 
 

 

    
 

   

 

 

 

  

  

  

   

 
  

  

 

 

   

   

  

 

 

 

  

  

  

 

 
 

  

 

   

   

 

 
      

 

 

   

  

   

 

 
  

  

 

  
     

  

  

   

16 

Table 3-1. Summary of Advantages and Disadvantages of LED Street Lights 

Advantages 

Energy Efficiency 

• LEDs can lead to reduction in energy consumption by as much as 80%. 

• LEDs led to an annual saving of $6 million in energy costs in Toronto 

• Use of solar-powered LEDs can be an environmentally-friendly illumination 

solution. 

Long Service Life • Average life of LED street lamps is ~ 50,000 hours, double that of HPS. 

Color Quality 

• Most LEDs have CCTs often above 5,000K and a cool bluish-white 

appearance. 

• LEDs have a range of 85–90 on the color rendering index (CRI). 

• The white light produced by LEDs can lead to accurate rendering of an 

object’s actual color. 

Mesopic Vision 

• The higher blue content of the LED light spectrum can render LEDs brighter 
than conventional light sources at the same lumen output. 

• The perceived lighting level of LEDs may not be fully represented by the 

conventional lumen and surface-level foot-candle measurements. 

Lack of Warm-up 

Time 

• LEDs can turn on/off instantly to full brightness without re-strike time. 

• The instant response speed of LEDs can turn on/off LEDs immediately 

according to environmental changes. 

Compact Size • Due to their compact size, LEDs allow flexibility in their form and design. 

Directional Light 
• LEDs enable more optical control. 

• LEDs can be designed to emit light in a specific direction. 

Reduced Light 

Pollution 

• LEDs can be designed to focus light on a preferred location. 

• LEDs can result in less light pollution and light trespass to adjacent areas. 

• LEDs can reduce over-illumination and glare to improve traffic safety for 

drivers and pedestrians alike. 

Environmental 

Benefits 

• LEDs are free of toxic materials such as mercury. 

• LEDs are free of heavy metals such as lead. 

• LEDs do not produce ultraviolet and infrared light. 

Dimmable 

Capabilities 
• LEDs provide more advantages in dimming over mercury vapor, metal halide, 

and HPS lamps. 

Breakage and 

Vibration 

Resistance 

• LEDs do not have a filament, arc tube, or fragile glass components. 

• LEDs offer a more robust light source and are more resistant to breakage and 

vibration. 

Luminous 

Efficacy 
• The luminous efficacy of LED street lights is not yet superior to conventional 

street lamps. 

Heat Conversion 

Rate 

• LEDs have a higher rate of power-to-heat conversion compared to 

conventional streetlights. 

• High-power LED chips generally transform ~ 80% of input power into heat. 

Installation Cost 

• LEDs currently require significantly higher initial installation costs compared 

to conventional streetlights. 

• LEDs currently require higher replacement costs compared to conventional 

street lights. 

Use of LED Array 
• The use of LED module arrays has a chance of component failure that 

increases with the increasing number of LED chips used. 

The existing SPFs and CMFs for lighting levels do not distinguish LED technology and 

traditional technologies such as HPS in safety analyses. As more and more road corridors have 
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been upgraded to LED systems in Florida and nationwide recently, engineers and managers need 

to assess the safety performance  of LED technology that has different vision characteristics from  

HPS. The SPFs and CMFs developed in the prototype were based primarily on HPS lighting data  

and cannot  capture  the safety characteristics of LED  lighting. Only one previous study  (5)  

explored the impacts of LED upgrade on nighttime crashes. It is needed to develop or calibrate  

CMFs for LED lighting based on FDOT District  LED upgrade projects conducted in the past  

decade. The enhanced computer tools in Phase II will integrate  the CMFs for LED lighting and 

provide a function to stratify stakeholder needs in  assessing the safety performance/benefits of 

LED lighting projects.  

This study focused on the following objectives:   

•  Address the safety effectiveness of LED lighting technologies  to preventing nighttime  

crashes.  

•  Evaluate the visibility performance of LED  colors  in terms of human’s detection 

distance.  

3.2  Experiment Design  

The research team  collected a 2018 inventory of LED  lighting poles  on  major corridors  in 

the Tampa Bay area, as shown in  Figure  3-2, from  FDOT District 7. The  inventory  provides  the  

location information and lamp types (HPS, LED, or unknown) for each lighting pole. However, 

it  does not include  the starting date of LED poles,  and  it impossible to identify the before  (HPS) 

and after (LED) periods  from the inventory.  Thus, this study could not apply the before-after 

study to compare nighttime crash frequencies before  and after upgrading HPS to LED  at  the  

same sites. Alternatively, a cross-sectional study, which compares  nighttime crash frequencies  

between two site groups (with and without LEDs) during the same time frame, was used in this  

study.   
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Figure 3-2. LED and HPS lighting poles in Tampa Bay area 



 

 

 

 

 

 

19 

3.3  Data Preparation  

The  procedure  for  data  collection and processing is given in  Figure  3-3.  

Step-1: Split Road Segments by Traffic Signals

Step-2: Identify Lamp Types for each Segment

Step-3: Match RCI Data to each Segment

Step-4: Match Crash Data to each Segment

Step-5: Develop Statistical Models

▪ Retrieve roadway segments and 

traffic signals from the FDOT RCI 

database

▪ Split segments by traffic signals

▪ Drop any splatted segments <0.1 

miles

▪ Finally, 749 segments were 

produced 

▪ Match lighting poles to each 

segments

▪ If a segment contains 100% LEDs, 

it is defined as an LED segment

▪ If a segment contains 100% HPS, 

it is defined as a HSP segment

▪ Drop other segments

▪ Finally, 43 LED segments and 331 

HPS segments were produced

▪ Calculate weighted average values 

for 

▪ AADT and truck facts (2018 

and 2019)

▪ Median width

▪ Number of lanes

▪ Shoulder width

▪ Speed limit

▪ Calculate density (numbers per 

mile) for

▪ Median opennings

▪ Retrieve crash data from FDOT 

State Safety Office Geographic 

Information System (SSOGIS)

▪ Identify nighttime crashes

▪ Lighting condition = Dark –

lighted, Dark – not lighted, 

Dark – unknown lighting

▪ Match nighttime crashes to each 

segment 

Figure  3-3. Procedure for  data collection  in LED  study  

Data Sources   

Three data sources were used in this study.  The  inventory of FDOT D7 lighting poles  in 

2018 was provided by FDOT District 7  and  included  locations and lamp types of street  lighting 

poles.  The traffic and geometric  information were retrieved from  the  FDOT Roadway 

Characteristics  Inventory (RCI) database,  and historical crash data were obtained from the FDOT  

State Safety Office  Geographic Information System  (SSOGIS).  

RCI Data Matching  Method  

RCI data (traffic  and geometries) were  matched to each segment. For statistical  modeling, 

the  Highway  Safety  Manual  (45)  advises  that  segments  need to be divided into homogenous  

sections  in which roadway characteristics are similar. However, homogenous segmentation may 

result in very short segments and lead to  a zero-inflated issue  (46). To avoid this, the research 

team  adopted the aggregation method (aggregating roadway characteristics for a long segment). 

The two methods are explained in  Figure  3-4.  In addition, any segments shorter than 0.1 miles  

were removed from  the dataset  to avoid bias estimation  (47).  
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1 2 3 4

Value 1 Value 2 Value 3

Value 1 Value 2

Attribute 1 –   values

Attribute 2 –   values

Output: 4 segments 
with homogenous 
attributes 1 and 2

Value 1 Value 2 Value 3

Attribute 1 –   values

Output: 1 segment with 
two weighted average 

attributes

Length 1 Length 2 Length 3

Weighted Average Attribute = 
Valuei × Lengthi

Lengthi
 

Attribute 2 –   values

Value 1 Value 2

Length 1 Length 2

A. Homogenous Segmentation

B. Aggregation (Weighted Average)

Figure  3-4. RCI  data matching methods  

Analysis Time Frame   

The inventory of lighting poles does not include information on  activation date  for LED  

lighting poles; the only information is  LED poles in activated  status in 2018. To minimize  

identification errors for lamp types, the analysis time frame  was adopted as two years—2018 and 

2019. It is assumed that FDOT did not change the  lamp types (LED and HPS) in those  two years.  

Nighttime crash frequencies were  counted for the two years for each segment,  and traffic  

information (AADT and truck percentage) were matched by the  two years for each segment; 

their yearly weighted averages  were calculated using the method  described in  Figure  3-4.   

A final dataset  containing 418 segments  was produced for statistical  modeling. The  descriptive  

statistics of the dataset  are shown in  Table  3-2.  

.  



 

Table Error! No text of specified style in document.-1. Descriptive Statistics of Collected Data 

for LED Study (obs = 418) 

 
Variable Mean Std Min Max 

Nighttime crashes, 2018 and 2019 14.978 16.036 0 151 

LED segment (1 = yes, 0 = no) 0.103 0.304 0 1 

Segment length (mi) 0.611 0.693 0.1 5.575 

Yearly weighted average AADT, 2018 and 2019 76520.09 38633.34 1300 273200 

Yearly weighted average truck factor, 2018 and 2020 9.096 4.550 3.2 27.7 

Weighted lane width (ft) 11.778 0.781 10 16 

Weighted lane width (ft) 23.944 13.257 0 117.727 

Weighted speed limit (mph) 45.136 6.265 30 62 

Density of unsignalized intersections 10.638 7.472 0 43.716 

1.1 Model Development 

Nighttime crashes are a typical count data with overdispersion (variance > mean). The 

negative binomial (NB) model was used to account for over-dispersion in count data. The model 

can be written as (48): 
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Table 3-3. Fitted Negative Binominal Model for LED Study 

Coefficient S.E. 
z-

statistics 

p-

value 
[95% conf. interval] 

Constant -5.904 0.633 -9.32 0 -7.145 -4.662 

Logarithm of yearly weighted 

average AADT 
0.777 0.056 13.77 0 0.666 0.887 

Logarithm of segment length 0.546 0.044 12.41 0 0.460 0.632 

Density of unsignalized intersections 0.026 0.005 5.1 0 0.016 0.036 

LED corridor indicator 

(1 = LED, 0 = HPS) 
-0.191 0.115 -1.66 0.098 -0.417 0.035 

alpha (overdispersion factor) 0.394 0.034 0.333 0.467 

Model Statistics 

Number of observations 416 

Log likelihood -1418.768 

Pseudo R2 0.0837 

Degree of freedom 6 

AIC 2849.536 

BIC 2873.72 

3.5 Conclusions 

The sign of LED segment indicator is a negative value and significant at a confidence 

level of 91%. It can be concluded that, compared to HPS, LED tends to decrease nighttime crash 

frequency on a roadway segment. The CMF for LED is derived from Eq. 7 as 

𝑒−0.191 𝐶𝑀𝐹 = = 0.83 

If the lighting system on a roadway segment is upgraded from HPS to LED, nighttime 

crash frequency is more likely to be reduced by 17% (=1-0.83*100%). This result indicates that 

LED not only introduces economic benefits (i.e., long service life and energy saving) but also 

brings safety benefits. The safety benefits of LED lighting is evidenced by its better performance 

for driver vision; the higher blue content of the LED light spectrum can render LEDs brighter 

than conventional light sources at the same lumen output. 

This study did not include lighting pattern parameters (i.e., horizontal illuminance) due to 

the absence of lighting data on the study corridors in 2018. Thus, comparison of LED and HPS 

could not exclude the influence from different lighting patterns. The CMF can explain the 

benefits of upgrading projects in FDOT District 7, but it may be biased to interpret the safety 

improvement from HPS to LED with the same lighting photometric patterns (i.e., same lighting 

level or same uniformity). A future study will collect enough data to address this issue. 
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Chapter 4:  Upgrading Lighting Uniformity   

Diagnosis Algorithm  

Road Classification 
Illumination Level 

Average Initial HFC 

Uniformity Ratios 

Avg/ Min Max/Min 

Interstates, Expressways, Freeways, 

Major Arterials 
1.5 4:1 or less 10:1 or less 

All other roadways 1.0 4:1 or less 10:1 or less 

Pedestrian ways and bicycle lanes 2.5 4:1 or less 10:1 or less 

4.1  Problem Statement  

Uniformity is a  measurement of how equally light is  distributed on a  road. A good 

uniformity design improves both visibility and visual  comfort  for drivers  (6). Many 

transportation agencies  have  adopted  two illuminance ratios—max-min ratio (MMR)  and 

average-min ratio (AMR)—to measure  roadway lighting uniformity:  

HFCMax 
MMR = 

HFCmin (5)HFCAvg 
AMR = 

HFCmin 

FDOT’s  Florida Design Manual  establishes a  requirement of 4:1 or lower uniformity ratio for 

AMR  and 10:1 or lower uniformity ratio for MMR, as shown in  Table  4-1.  

Table  4-1.  FDOT Conventional Roadway Lighting Requirements  

In practice, simply calculating the MMR and AMR for a whole segment may introduce 

extremely high ratio values and may not accurately capture the “true” pattern features 
influencing driver vision on a roadway corridor. For example, as shown in Figure 4-1, the 

uniformity for the whole roadway segment is the ratio of the maximum value (1.5 fc) over the 

minimum value (0.1 fc), equal to 15. The maximum illuminance point, however, is far from the 

minimum illuminance point. The change from minimum illuminance to maximum illuminance 

does not influence driver vision; the true pattern that deteriorates the vision is the change from a 

low-lit zone (0.1 fc) to a high-lit zone (0.9 fc) in successive subsections along the travel route. 

0.1 0.1 0.1 0.1 0.4 1.0 0.5 0.6 0.7 1.0 1.3 1.5

0.1 0.1 0.9 0.6 0.8 0.8 1.2 1.40.6

min max

true pattern

Figure 4-1. Example of ratio-based uniformity calculation for a whole roadway segment 
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4.2 Sliding Window Algorithm 

This study developed an sliding window diagnosis algorithm to better address the 

uniformity pattern along a corridor. When driving along a road segment, a driver needs to 

continuously scan the front to detect any potential risk. The field of driver vision is a function of 

travel speed, as shown in Figure 4-2. 

Figure 4-2. Field vision and speed (49) 

In night driving, driver vision is influenced by the lighting pattern within the field of 

vision rather than the whole segment. Thus, the calculation of uniformity should be applied on a 

window that covers the field of vision rather than the whole segment. 

Figure 4-3 shows the concept of the sliding window algorithm, which creates a series of 

windows along a road segment from the beginning of segment to the end of segment in small 

steps. The windows, which are a rectangle with parameterized dimension (length and width), 

represent the fields that influence driver vision at each moment when driving on the segment. 

The uniformity measures, MMR and AMR, are calculated for each window. The windows may 

be overlapped, as the move step is usually smaller than the window length. The uniformity 

measures for the overlapped area adopt the “worst case”—the maximum uniformity measures of 

the overlapped windows. 

1st
2nd

3rd

Nth

Moving Direction
(N-1)th

Sliding Window

Moving Step

▪ Overlapped area by Windows 1, 2, 
and 3

▪ The area uniformity is labeled as the 
worst uniformity of the 3 windows

Figure 4-3. Concept of sliding window algorithm for uniformity diagnosis 
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Finally, the areas with an issued uniformity (does not satisfy the DOT standards) are 

labeled. Percentage of issued uniformity, weighted average uniformity, and worst uniformity 

performance are calculated for each section. 

The detailed algorithm is described in Figure 4-4 and Figure 4-5. The terms used in the 

algorithm are as follows: 

• Window – a rectangle covers a driver’s vision field when driving; the window is the unit 

for uniformity calculation, and the window dimension can be configured: 

- Length – determined by stopping sight distance, which is a function of speed; 600 ft 

is default value. 

- Width – for undivided roads, width suggested to cover all through lanes or, 

otherwise, through lanes on one side. 

• Moving step – distance between two adjacent windows, representing the uniformity scan 

resolution; a smaller moving step may introduce additional processing time; the default 

value is 100 ft. 

• Slice – area overlapped by sliding windows; its uniformity is labeled by the worst 

uniformity measure of the overlapped windows. 

• Section – aggregation of neighboring slices that have similar uniformity; length of 

section should satisfy minimum length; final statistics calculated based on sections. 
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Start

Sliding Window 

Generation

▪ Create a window with the given window length from 

the beginning of a road segment

▪ Moving the window by the given moving step 

▪ Repeat moving until reach the ending of the segment

▪ A series of sliding windows are generated 

Measure Calculation for 

Windows
▪ Calculate university measures for each window

Parameter Specification

▪ Uniformity measure (max/min, avg/min, or others) and 

categories

▪ Window length

▪ Moving step

▪ Minimum section length

Slice Generation
▪ Split the segment into slices that have an uniform length 

of the moving step

Measure Calculation for 

Slices

▪ Identify the windows overlapped with each slice

▪ Adopt the worst window as the uniformity measure of 

the slice

▪ Label slices based on the given uniformity category

▪ Set all neighboring slice-pair as unblocked

Hierarchical Clustering

Output

▪ Calculate uniformity measure for each section

▪ Compare photometric statistics of each section with 

DOT standards

▪ Output diagnosis results (meet or not) for each section

End

▪ Merge similar neighboring slices into sections

▪ The final sections satisfy

▪ All neighboring sections have different uniformity 

category label 

▪ All sections are equal to or longer than the 

minimum length

Figure 4-4. Sliding window algorithm for uniformity diagnosis 
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Pair Identification

▪ Calculate the difference between neighboring slices 

▪ Identify the  closest  slice-pair that two unblocked 

neighboring sections with the least difference in 

uniformity measures.

Satisfy Merge 

Criterion?

▪ If the two neighboring slices have the same label, then 

merge

▪ If the two neighboring slices have different label and 

either of them cannot satisfy the minimum length, then 

merge

Satisfy Stopping 

Criterion?

▪ Each section length is greater than the minimum 

length, and

▪ All neighboring sections has different labels

Merge

Yes

▪ Combine the neighboring slices as one section

▪ Recalculate uniformity measure for the combined 

section

Yes

Set the Pair as 

 Blocked 

No

Slices with Calculated 

Uniformity Measure and 

Label 

Final Sections

Figure 4-5. Hierarchical clustering for slice merging 

4.3 Example of Sliding Window Algorithm 

Lighting data were collected on a 0.5-mile segment (College Ave between US-41 and 7th St SE, 

Ruskin, FL). The segment layout and lighting data are shown in Figure 4-6. Lighting statistics 

are shown in Table 4-2. 
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Figure 4-6. Lighting data for 0.5-mile segment 

Table 4-2. Horizontal Illuminance Statistics for Whole Segment, 

College Avenue in Ruskin, FL 

LT Points Average Max Min MMR AMR 

1,106 0.56 fc 2.21 fc 0.1 fc 22.1 5.6 

This study applied the sliding window diagnosis algorithm using the following 

parameters: 

• Uniformity measure: MMR (max-min ratio) 

• Window Length: 600 ft (0.114 mi) 

• Window Width: all through lanes on both sides 

• Moving Step: 100 ft (0.019 mi) 

• Minimum Length of Final Sections: 0.1 mi 

• Uniformity Categories (category for demonstration only): 

- 1 – MMR ≤ 10 (meets FDOT standard) 

- 2 – 10<MMR≤20 (does not meet FDOT standard) 

- 3 – 20<MMR≤30 (significantly does not meet FDOT standard) 

- 4 – MMR> 30 (extremely does not meet FDOT standard) 
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Step 1: Generate windows and calculate MMR. A series of window was created along the 

segment in a moving step of 0.114 miles. MMR was calculated for each window. The sliding 

windows and uniformity measures are shown in Table 4-3. 

Table 4-3. Sliding Windows and Uniformity Measures 

Window BMP EMP Average Max Min MMR 

1 0 0.114 0.55 1.69 0.13 12.97 

2 0.019 0.133 0.56 1.69 0.17 9.94 

3 0.038 0.152 0.59 1.69 0.17 9.94 

4 0.057 0.17 0.51 1.62 0.14 11.36 

5 0.076 0.189 0.45 1.62 0.13 12.27 

6 0.095 0.208 0.41 1.34 0.13 10.14 

7 0.114 0.227 0.50 1.81 0.13 13.68 

8 0.133 0.246 0.60 1.94 0.13 14.65 

9 0.152 0.265 0.58 1.94 0.13 14.65 

10 0.17 0.284 0.58 1.94 0.13 14.65 

11 0.189 0.303 0.60 1.94 0.13 14.42 

12 0.208 0.322 0.70 2.21 0.10 21.39 

13 0.227 0.341 0.65 2.21 0.10 21.39 

14 0.246 0.36 0.57 2.21 0.10 21.39 

15 0.265 0.379 0.53 2.21 0.10 21.39 

16 0.284 0.398 0.51 2.21 0.10 21.39 

17 0.303 0.417 0.59 2.21 0.10 21.39 

18 0.322 0.436 0.57 1.72 0.10 16.64 

19 0.341 0.455 0.59 1.72 0.12 14.05 

20 0.36 0.473 0.63 1.72 0.12 14.05 

21 0.379 0.492 0.61 1.72 0.13 13.66 

22 0.386 0.5 0.62 1.72 0.14 12.60 

Step 2: Generate slices. A slice represents a small area in which multiple windows are 

overlapped; the slice length is the moving step (0.019 miles). For example, Slice 4 (0.057 – 
0.076) is the overlapping area for Window 1 (0 – 0.114), Window 2 (0.019 – 0.133), Window 3 

(0.038 – 0.152), and Window 4 (0.057 – 0.17). As Window 1 has the worst uniformity (MMR = 

12.97), the uniformity for Slice 4 is labeled as 12.97. The slices and associated uniformity 

measures are given in Table 4-4. 
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Table 4-4. Slice Generation 

Slice BMP EMP MMR 

1 0 0.019 12.97 

2 0.019 0.038 12.97 

3 0.038 0.057 12.97 

4 0.057 0.076 12.97 

5 0.076 0.095 12.97 

6 0.095 0.114 12.97 

7 0.114 0.133 13.68 

8 0.133 0.152 14.65 

9 0.152 0.17 14.65 

10 0.17 0.189 14.65 

11 0.189 0.208 14.65 

12 0.208 0.227 21.39 

13 0.227 0.246 21.39 

14 0.246 0.265 21.39 

15 0.265 0.284 21.39 

16 0.284 0.303 21.39 

17 0.303 0.322 21.39 

18 0.322 0.341 21.39 

19 0.341 0.36 21.39 

20 0.36 0.379 21.39 

21 0.379 0.398 21.39 

22 0.398 0.417 21.39 

23 0.417 0.436 16.64 

24 0.436 0.455 14.05 

25 0.455 0.473 14.05 

26 0.473 0.492 13.66 

27 0.492 0.5 12.60 

Step 2: Merge slices. Table 4-5 shows the sections that merge neighboring slices with the same 

MMR values. The MMR category is assigned to each section. Compared to the MMR for the 

whole segment (MMR=22.1), the sliding window algorithm gives more detailed information on 

the uniformity pattern. Table 4-5 indicates that uniformity of all sections does not meet the 

FDOT standard; however, Section 4 (0.208-0.417) has the worst uniformity (MMR=21.39). The 

weighted average MMR for this segment is calculated as 

∑ 𝑀𝑀𝑅𝑖 × 𝐿𝑒𝑛𝑔𝑡ℎ𝑖 
𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑀𝑅 = = 17.01 

∑ 𝐿𝑒𝑛𝑔𝑡ℎ𝑖 

The diagnosis results are displayed in Figure 4-7. 

https://MMR=21.39
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Table 4-5. Merge Slices by Value to Sections 

Section BMP EMP MMR Category 

1 0 0.114 12.97 2 

2 0.114 0.133 13.68 2 

3 0.133 0.208 14.65 2 

4 0.208 0.417 21.39 3 

5 0.417 0.436 16.64 2 

6 0.436 0.473 14.05 2 

7 0.473 0.492 13.66 2 

8 0.492 0.5 12.60 2 

Figure 4-7. Display of uniformity diagnosis results 

Step 3: Hierarchical Clustering (Optional). The sections can be clustered based on the 

uniformity category. For example, Sections 1, 2, and 3 in Table 4-5 have the same category 

(Category 2) and can be merged into one section. Sections 5–8 in 4-4 also have the same 

category (Category 2). However, the total length of the four sections is 0.083 miles, less than the 

minimum length for the final sections (0.1 miles). Thus, the four sections were combined with 

Section 4 in Table 4-5. The final sections are shown in Table 4-6. 

Table 4-6. Slice Merge by Category using Hierarchical Clustering 

Section BMP EMP Length Category 

1 0 0.208 0.208 2 

2 0.208 0.5 0.292 3 



 

 

 

 

 

  

   

   

     

       

  

   

 

  

   

 

32 

Chapter 5: Software Development 

The computer tools developed in Phase I were built on an Esri Web-GIS platform and a 

map was integrated for data visualization, such as roadway inventory, heatmaps, analysis results, 

and figures. Based on the prototype developed in Phase I, this study recoded the analysis engine 

to integrate the uniformity of a diagnosis algorithm developed in this study and to optimize the 

speed of the existing algorithms. The analysis engine is coded as a pure Python package and can 

run as a stand-alone application or a Python toolbox in ArcGIS Pro. The system architecture of 

analysis engine is shown in Figure 5-1. 

Data Connection

Diagnosis

Safety Performance 

Function

RCI

REST API

Flat Files (csv)

SQL Lite

▪ Lighting Inventory

▪ RCI Data

▪ Crash

Optimized Hierarchical Clustering 

Algorithm

Sliding Window Algorithm

Predict Nighttime Crashes

Estimate Nighttime Crash Reduction 

due to Lighting Improvement

Homogenous Segmentation 

Weighted Average

Module Function Data

Figure 5-1. System architecture of analysis engine 



 

 

 

 

 

 

33 

The major modules include:  

•  Data Connection  –  provides  a logic layer to separate analysis functions from data  

sources. The module can access lighting data, roadway characteristics  inventory (RCI) 

data, and crash data from different sources, such as  web service (REST API), local  

database (SQLLite), or flat text files. The retrieved data will  be provided to other 

modules.  

•  Diagnosis  –  provides two major diagnosis functions—(1) hierarchical  clustering 

algorithm for lighting level diagnosis,  and (2) sliding window algorithm for uniformity 

diagnosis.  

•  Safety Performance  Function (SPF)  –  predicts  nighttime crashes based on lighting data, 

geometries, and traffic data  for a segment;  can also estimate the benefits (crash reduction) 

due to a lighting improvement.  

•  RCI  –  processes  geometry and traffic data obtained from  the  FDOT RCI database for 

SPFs; provides  two major functions—s:  (1) homogenous  segmentation and (2) weighted  

average. The detailed information of the two functions  is  given in  Figure  3-4.    

The  study optimized the  algorithms to improve the running speed. Figure  5-2  shows the  

comparison of  applying the hierarchical clustering diagnosis algorithm  on the same segment  

before and after optimization. With the  optimization, the running time  is reduced from 504 

seconds to 53 seconds. The optimized algorithm  can be used on a big-scale network.  
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Figure  5-2. Comparison of running time for applying hierarchical  clustering diagnosis   

on Rickenbacker Drive, Ruskin, FL  
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Chapter 6: Summary and Conclusions 

6.1 Summary and Conclusions 

Roadway lighting is a conventional roadway infrastructure to ensure nighttime safety and 

security for multimodal road users (motorists, pedestrians, cyclists, transit passengers). To cost-

effectively maintain a roadway lighting system, key tasks in infrastructure management include 

periodically measuring roadway lighting levels, diagnosing lighting performance based on 

collected data, and providing decision-making support for maintenance and improvement. 

The ALMS developed by CUTR provides a low-cost and time-effective solution for 

collecting high-resolution lighting data for a big-scale roadway network. A previous CTEDD-

study, “Development of Automated Roadway Lighting Diagnosis Tools for Nighttime Traffic 

Safety Improvement, Phase I,” developed improved an analysis tool to diagnosis lighting 

patterns and predict nighttime crash risks based on the big lighting data. This Phase II study 

enhanced the tool in terms of investigating the impacts of lighting patterns on nighttime 

pedestrian crashes, addressing the effectiveness of LED technologies, developing a sliding 

window algorithm for uniformity diagnosis, and recoding the analysis engine to integrate more 

functions and improving processing speed. 

Major conclusions from this study include the following: 

• Both the mean of horizontal illuminance (representing average lighting level) and the 

standard deviation of horizontal illuminance (representing uniformity) significantly 

impact nighttime pedestrian crashes on roadway segments. For average lighting level, 

taking the low HFC mean (<0.2 fc) as the baseline, the CMFs for medium [0.2 fc, 0.5 fc], 

medium-high (0.5 fc, 1.0 fc], and high (>1.0 fc) illuminance means are 0.225, 0.188, and 

0.145, respectively. For lighting uniformity, compared to low HFC standard deviation 

(<0.52 fc), the CMF for high illuminance standard deviation (≥ 0.52 fc) is 1.803. 

• Upgrading the conventional lighting system (HPS technologies) to LED lighting tends to 

decrease nighttime crash frequency. The CMF for LED lighting upgrading is 0.83, which 

can be used to evaluate the benefits of roadway lighting upgrading projects in Florida. 

• Ratio-based uniformity measures (max-min ratio, average-min ratio) for the whole 

segment may introduce extremely high values and cannot capture the true lighting pattern 

influencing driver vision. The sliding window algorithm scans the lighting patterns along 

a segment and calculates the uniformity measures within a limited area covering a 

driver’s vision field. The algorithm can provide more reasonable and detailed diagnosis 

of lighting uniformity. 

• The recoded analysis engine contains more functions and greatly improves processing 

speed. The engine can be executed as a stand-alone application or can be integrated into 

ArcGIS Pro or the Web-GIS tool developed in Phase I. The improved processing speed 

allows applying the analysis to a big-scale roadway network. 
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6.2 Implementation 

The CUTR team is working with FDOT District 7 to collect and analyze lighting data on 

District-wide state roads under contract FDOT BDV25 762-30. As shown in Figure 6-1, the 

identified corridor segments within the district include: 

• 171 State Road segments with streetlights 

• 412 total centerline mileage is 412 miles 

• The total lane mileage is 1,926 miles. 

Figure 6-1. FDOT District 7 district-wide lighting data collection and analysis 

The analysis methods and engine developed in this study will be used to analyze the 

district-wide lighting data and provide decision-making support to FDOT for their roadway 

lighting management and maintenance. 
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